Master symmetries for Volterra equation, Belov–Chaltikian and Blaszak–Marciniak lattice equations
نویسندگان
چکیده
منابع مشابه
An Approach to Master Symmetries of Lattice Equations
Symmetries are one of important aspects of soliton theory. When any integrable character hasn’t been found for a given equation, among the most efficient ways is to consider its symmetries. It is through symmetries that Russian scientists et al. classified many integrable equations including lattice equations [1] [2]. They gave some specific description for the integrability of nonlinear equati...
متن کاملEnergy Preserving Methods for Volterra Lattice Equation
We investigate linear energy preserving methods for the Volterra lattice equation as non-canonical Hamiltonian system. The averaged vector field method was applied to the Volterra lattice equation in bi-Hamiltonian form with quadratic and cubic Poisson brackets. Numerical results confirm the excellent long time preservation of the Hamiltonians and the polynomial integrals.
متن کاملLie discrete symmetries of lattice equations
We extend two of the methods previously introduced to find discrete symmetries of differential equations to the case of difference and differentialdifference equations. As an example of the application of the methods, we construct the discrete symmetries of the discrete Painlevé I equation and of the Toda lattice equation.
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولSPLINE COLLOCATION FOR FREDHOLM AND VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
A collocation procedure is developed for the linear and nonlinear Fredholm and Volterraintegro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solutionis collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula.The error analysis of proposed numerical method is studied theoretically. Numerical results are given toil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2003
ISSN: 0022-247X
DOI: 10.1016/s0022-247x(03)00032-5